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 Energy is an abstract theoretical concept that is not associated with any physical entity or 
mechanism.  It is a useful quantity to keep track of, and physicists in some sense are just 
bookkeepers of energy.  Energy comes in many forms.  We first encounter kinetic energy 
𝑇 = 1

2
𝑚𝑣2 for a single particle.  The kinetic energy can change when the particle is acted upon 

by a force that has a component along the direction of displacement of the particle: 𝑑𝑇 = �⃗� ∙ 𝑑𝑟.    

This leads to the Work-Kinetic energy theorem: 𝑇2 − 𝑇1 = ∫ �⃗�(𝑟′) ∙ 𝑑𝑟′𝑟2
𝑟1

, where the value of the 

line integral (known as ‘work’) will in general depend on the path (or contour) taken between the 
points 𝑟1 and 𝑟2. 

 There are two types of forces – conservative and non-conservative.  Conservative forces 
have potential energy functions associated with them.  To be conservative, a force must satisfy 
two requirements: 

1) The force depends only on the particle coordinates, and not the velocity, momentum, 
time, etc. 

2) The work done by the force between any two points must be independent of path. 

Examples of conservative forces include gravity and the electrostatic force.  Non-conservative 
forces include friction and the drag forces that we considered earlier. 

 The potential energy is defined as follows.  Choose an arbitrary position 𝑟0 where the 
potential energy will be assigned a value of 0.  The potential energy is defined in terms of the 

work done on the particle to take it from 𝑟0 to any point 𝑟: 𝑈(𝑟) ≡ −𝑊(𝑟0 → 𝑟) = −∫ �⃗�(𝑟′) ∙𝑟
𝑟0

𝑑𝑟′ , where there is no need to specify the contour for the line integral.  Note the minus sign.  
With this definition, one can show that if only conservative forces act, the total mechanical 
energy 𝐸 = 𝑇 + 𝑈 of the system is conserved, i.e. ∆𝐸 = 0.  This conservation law is very useful 
for solving problems.  If non-conservative forces do act, along with conservative forces, then the 
mechanical energy of the system changes by an amount equal to the work done by the non-
conservative forces: ∆𝐸 = 𝑊𝑛𝑛.  𝑊𝑛𝑛 is typically negative because non-conservative forces 
usually ‘steal’ mechanical energy and convert it to heat (thermal energy). 

 We considered the process of deducing a vector force from a given scalar potential-
energy function.  This is done through the gradient differential operator �⃗� = −∇��⃗ 𝑈.  Note that this 
is actually three equations in one.  We did the example of the electrostatic potential 𝑈 =
𝑘𝑞1𝑞2/𝑟, and showed that the associated force is the Coulomb electrostatic force �⃗� =
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𝑘𝑞1𝑞1�̂�/𝑟2.  Since conservative forces are derived from a potential energy function, we can find 
a simple necessary (but not sufficient) test to see if the force really is conservative.  Taking the 
curl of a conservative force yields ∇��⃗ × �⃗� = −∇��⃗ × ∇��⃗ 𝑈 = 0, where the last term is a vector identity 
good for all (well-behaved) scalar functions 𝑈(𝑟).  Hence all conservative forces must be curl-
free vector fields.  An additional requirement is that the force depends only on the particle 
coordinates. 

 We considered energy for motion in one-dimensional systems.  This is not as artificial as it first 
appears – later we will be able to break certain 3D problems to simpler 2D and 1D problems, and the 
methods that follow will be very useful.  Consider a particle confined to move only on the x-axis.  It has a 

kinetic energy 2

2
1 xmT = .  The kinetic energy can be altered by applying a force and doing work on 

the particle.  The tangential component of the force does work as  ∫=→
1

0

')'()( tan10

x

x

dxxFxxW .  If this 

force is conservative, one can define an associated potential energy (PE) as 

∫−=→−=
x

x

dxxFxxWxU
0

')'()()( tan0 , where it is assumed that 0)( 0 =xU .  We also expect that the 

total mechanical energy will be conserved: )(xUTE += , and 0=∆E .  This conservation law allows 

elegant solution of 1D problems involving conservative forces. 

 We did an example of a Hooke’s law restoring force in 1D: xxkF 
−= , with an equilibrium 

point at 0=x .  The corresponding potential is 2

2
1)( kxxU = , with 0)0( =U .  The mechanical energy 

is conserved:  22

2
1

2
1 kxxmE +=  .  As the particle moves it exchanges energy back and forth between 

kinetic and potential energies.   

Consider a particle moving under just the Hooke’s law restoring force in one dimension.  We call 
this a harmonic oscillator.  If the particle has a total mechanical energy E , it will move back and forth 
between two values of 𝑥, call them ±𝑥𝑚𝑚𝑚.  As the particle approaches the extreme value of 𝑥 it will 
be at a point where 𝑈 = 𝐸, hence it must be the case that 𝑇 = 0, and the particle comes to rest.  
This is called the classical turning point.  Classically the particle reverses direction and does not venture 
beyond the classical turning point because it would require a negative value for 𝑇, which is not possible 
classically.  However in quantum mechanics the kinetic energy operator in one-dimensional wave 

mechanics is given by 𝑇 = −ℏ2

2𝑚
𝑑2𝜓
𝑑𝑚2

, which is basically minus the curvature of the wavefunction.  In this 

case both signs of the kinetic energy are possible.  For locations inside the classical turning points, the 
wavefunction is concave towards the axis, meaning negative curvature and a positive kinetic energy.  
For locations “outside the well,” meaning beyond the classical turning points, the wavefunction is 
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concave away from the axis, meaning positive curvature and negative kinetic energy.  Either way, 
mechanical energy )(xUTE += is conserved in the motion. 


